• Home Automation • Hotel Solution
 • Intelligent Lighting • LED Lighting system
 • Professional Stage Lighting • Show Control
HDL KNX / EIB-BUS
(Intelligent Installation Systems)

Product Manual

Contents

1-General ..4
 1.1-Product Function ..5

2- Hardware ...6
 2.1 Technical data ...6
 2.2 Product and functional description TS/C 1.0 ..8
 2.3 Dimension drawings ...9
 2.4 Wiring diagram ...9
 2.5 Maintenance and Cautions ..11

3- Software ...12
 3.1 Database functions Overview ..12
 3.2 Function parameter “General” ..13
 3.3 Function parameter “Heating and Cooling” ...15
 3.3.1 Actual temperature ..19
 3.3.2 Setpoint ...22
 3.3.3 Fan ...26
 3.3.4 Valve ..32
 3.3.4.1 Heating/Cooling valve (relay) ...32
 3.3.4.2 Heating/Cooling valve (0-10v) ..39
 3.3.5 Function statue ...42
 3.4 Function parameter “Floor Heating” ...46
 3.4.1 Channel A (Floor heating) ...47
 3.4.1.1 ->Operation mode ..50
 3.4.1.2 ->Valve ...53
 3.5 Function parameter “Switch actuator” ..58
4-Communication objects description ... 63

4.1 Objects “General” .. 63

4.2 Fan/Fan coil controller .. 63

 4.2.1 Objects “Actual temperature” ... 63

 4.2.2 Objects “Setpoint” .. 64

 4.2.3 Objects “HVAC control mode” ... 64

 4.2.4 Objects “HVAC mode” ... 65

 4.2.5 Objects “Fan” .. 66

 4.2.6 Objects “Fan status” ... 68

 4.2.7 Objects “Fan limitation” .. 69

 4.2.8 Objects “Valve Heating” .. 70

 4.2.9 Objects “Valve Cooling” .. 70

4.3 Floor heating ... 71

 4.3.1 Objects “Slave clock” .. 71

 4.3.2 Objects “Pipe pressure protection” ... 72

 4.3.3 Objects “Floor heating N” .. 72

4.4 Switch actuator .. 76

 4.4.1 Objects “Output N” .. 76

5- Application .. 78

 5.1 Program functions diagram ... 78

 5.2 Room thermostat with the Fan Coil Controller ... 79

 5.3 Room thermostat with the floor heating ... 79
1-General

HDL KNX / EIB series the Fan Coil Unit Controller is developed by HDL. Using KNX/EIB BUS communicate with other KNX devices. Database need to be downloaded to the Fan Coil Unit Controller by using ETS2 V1.3/ETS 3.0. The document describe how to use the products. Our products use standard according to EMC, electrical safety, environmental conditions.

The Fan Coil Unit Controller is used to control fan coil units (heating and cooling terminal units), floor heating or switch actuators. They are installed in the room and supplied via a central heating and cooling system. The room temperature can be very quickly adapted to individual requirements using this system.

The applications described in the following enable the control of:

- Fans
- Blowers
- Fan coil units
- Valves for heating or cooling
- Electrical loads

The outputs which are not required for the fans, blowers and fan coil functions can be used as switch actuators for switching electrical loads or as heating actuators for controlling valves.

The rights and the copyright to this manual are exclusively the property of HDL.
1.1-Product Function

The Fan Coil Unit Controller is used to control fan coil units, floor heating or switch actuators. Depending on the design of the device, fan coil units are used in 2-pipe systems (heating only, cooling only, or heating and cooling via a common piping system) or alternatively in 4-pipe systems (heating and cooling via separate pipes). It controls up to 3 fan speeds (Relay or 0-10V outputs) as well as heating or cooling valves (Proportional or electrothermal valve) respectively. The mode of control is based on two-step control or a time-discrete PI controller with setpoint / actual value comparison. The valves and the fan can be regulated directly by devices via the closed loop of this controller. When the Fan Coil Unit Controller is used in floor heating, it is the maximum control seven channel output respectively. All of the floor heating channel control is used a time-discrete PI controller with setpoint / actual value comparison.

The following functions can be set in different functions:
1-Five channel 10A relay outputs
2-Two channel 0-10V DC outputs
3-Fan speed: High, Medium, Low
4-HVAC working mode: Heating, Cooling
5-HVAC operation mode: Standby mode, Comfort mode, Night mode, Frost protection
6-Fan speed and Valve status report
7-Seven local temperature sampling
8-BUS temperature sampling
9-Local temperature report
10-Seven channel floor heating outputs
11-Five control mode each floor heating channel
12-Seven channel output independently
13-Channel statistics total ON time
14-Channel state response
15-Channel state after bus voltage failure and recovery
16-Staircase light
17-Delay
18- PWM control output
2- Hardware

The technical properties of HDL KNX/EIB Fan coil controls as following sections.

2.1 Technical data

Power supply

* Operating voltage(supply by the bus) 21...30 V DC,
* Current consumption EIB / KNX(operate) < 20 mA
* Current consumption EIB / KNX(standby) < 5 mA
* Power consumption EIB / KNX(operate) < 600 mW
* Power consumption EIB / KNX(standby) < 150 mW

Output nominal values

* Number of contacts 5 relay and 2 channel 0-10v
* In rated current Relay 10 A and 0-10v 5mA
* Power loss per device at max. load 3.3 W
* Unrated voltage 250/440V AC (50/60 Hz)

Output switching life expectancy

* Mechanical Life > 1000000
* Electrical Life (240 V/cos = 0.8) > 100000

Connections

* EIB / KNX Bus Connection Terminal
 0.8 mm Ø, single core
* Load circuits Screw terminal with Slotted head
 0.2...4 mm² multi-core
 0.4...6 mm² single-core
* Cable shoe 12 mm
* Tightening torque Max. 0.8 Nm

Temperature input

* Local temperature sensor TS/C 1.0 (max. 7 sensor)
 Cable length max. 50 m
* Via EIB/KNX One or two object

Operating and display

* Red LED and EIB / KNX program button for assignment of the physical address.
* Green LED flashing on the EIB / KNX program button is read back the local temperature.
* Green LED flashing on the top shell show that the device is working.
Note: Press the EIB / KNX program button 3 seconds to refresh the local temperature sensor (TS/C 1.0).
Temperature range
- *Operation*

 \[-5 \degree C \sim +45 \degree C\]
- *Storage*

 \[-25 \degree C \sim +55 \degree C\]
- *Transport*

 \[-25 \degree C \sim +70 \degree C\]

Environment conditions
- *humidity*

 max. 95 % Non-condensing

Appearance design
- *Modular*

 DIN-Rail Modular installation
- *Dimensions (H x W x D)*

 90 mm x 72 mm x 64 mm

Weight (unit kg)

0.26

Installation

Use 35 mm mounting rail

Mounting position

Electric switch box

Material and Colour

Plastic, Black

Standard and Safety
- *LVD Standard*

 EN60669-2-1, EN60669-1
- *EMC Standard*

 EN50090-2-2

CE mark

- In accordance with the EMC guideline and low voltage guideline

Pollutant

Comply with RoHS

Application table

<table>
<thead>
<tr>
<th>Type</th>
<th>M/FCU01.10.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. number of communication objects</td>
<td>230</td>
</tr>
<tr>
<td>Max. number of group addresses</td>
<td>254</td>
</tr>
<tr>
<td>Max. number of associations</td>
<td>254</td>
</tr>
</tbody>
</table>

Note: The programming requires the EIB Software Tools ETS2 V1.3 or ETS3.0. If use ETS2 V1.3, then import "*.vd2". If use ETS3.0, then Import "*.vd3"
2.2 Product and functional description TS/C 1.0

The temperature sensor measures the ambient temperature. It is connected to the Fan Coil Unit Controller via screw terminals.

The temperature sensor can only be used in combination with the Fan Coil Unit Controller M/FCU01.10.1

Technical data for TS/C 1.0

Cable
* Cable type 3-core cable
* Cable length 1 m
* Cable colour black

Connections
* Yellow cable Screw terminal “DIGIT TEMP”
* Red cable Screw terminal “COM”
* Black cable Screw terminal “COM”

Ambient temperature range
* Operation – 25 °C ~ + 60 °C
* Storage – 25 °C ~ + 60 °C
* Transport – 25 °C ~ + 70 °C

Weight 0.05kg

Sensor serial number
The local temperature sensor serial number (e.g. 188) is used for the floor heating, setting it to the parameters Temperature sensor serial number (1..255) in the parameter window “Floor heating – Channel A (B,C,D,E,F,G)”. One local temperature sensor correspond to one floor heating room temperature, so it can’t connect the same serial number sensor on a M/FCU01.10.1.

Wiring diagram for TS/C 1.0

![Wiring diagram for TS/C 1.0](image-url)
2.3 Dimension drawings

![Dimension drawings image]

2.4 Wiring diagram

![Wiring diagram image]

1- Label area
2- Channel F,G , output DC0-10 voltage
3- Local temperature ,can connect 7 temperature sensor
4- KNX/EIB Bus Connector
5- Programming button & Red programming LED & Green Local temperature LED
6- Green working LED
7- Channel D,E (Relay output)
8- Channel A,B,C (Relay output)
Examples for application

Different configuration corresponding different wiring diagram.

1. Fan coil units:

- AC250V L N
- Heating (Heating and Cooling)
- MIFCU01.10.1
 - U=295V~
 - I=10A
 - Heat 7 channels

- AC250V L N
- Cooling
- MIFCU01.10.1
 - U=295V~
 - I=10A
 - Heat 7 channels

- AC250V L N
- Heating (Heating and Cooling)
- MIFCU01.10.1
 - U=295V~
 - I=10A
 - Heat 7 channels

- AC250V L N
- Heating
- MIFCU01.10.1
 - U=295V~
 - I=10A
 - Heat 7 channels
2. Floor heating and switch actuators:

![Diagram of floor heating and switch actuators]

Note:

a) Dimensions of the space to be provided for each device.
b) Dimensions and position of the means for supporting and fixing the DMX Recorder within this space
c) Minimum clearance between the various parts of the DMX Recorder and the surrounding parts where fitted
d) Minimum dimensions of ventilating opening, if needed, and their correct arrangement.

2.5 Maintenance and Cautions

*Please read this user manual carefully before any operation.
*Don't close to the interfering devices.
*The site should be ventilated with good cooling environment.
*Pay attention to damp proof, quakeproof and dustproof.
*Avoid rain, other liquids or caustic gas.
*Please contact professional maintenance staff or HDL service center for repair or fix.
*Remove the dust regularly and do not wipe the unit with the volatile liquids like alcohol, gasoline, etc.
*If damaged by damp or liquid, turn off it immediately.
*Regularly check the circuitry and other related circuit or cables and replace the disqualified circuitry on time.
*For security, each circuit to connect an MCB or fuse
*Installation location should be well-ventilated, pay attention to moisture, shock, dust proof.
3- Software

HDL KNX/EIB Fan Coil Unit Controller database use ETS3.0 to do the design. The device types is M/FCU01.10.1, and the database name is “FCU 7CH Heating Actuator”. All Interface and the functions apply parameters please overview the following description of the paragraph. Some function of the Fan Coil Unit Controller is the same. So, following paragraph will description of the function in detail.

3.1 Database functions Overview

The following table provide an overview of the functions and some parameters with the Fan Coil Unit Controller:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Supported functions, operation, channel select</td>
</tr>
<tr>
<td>Fan/Fan coil controller</td>
<td>Fan, Heating, Cooling, Heating and Cooling</td>
</tr>
<tr>
<td>System type</td>
<td>2-pipe system: There is one single water circuit that is filled with cooling or heating medium according to the season. 4-pipe system: The system consists of two separate water circuits for heating and cooling.</td>
</tr>
<tr>
<td>Actual temperature</td>
<td>Read actual temperature via the KNX/EIB or local sensor, response and monitoring the temperature</td>
</tr>
<tr>
<td>Setpoint</td>
<td>Base setpoint temperature, different operation mode (Comfort mode, Standby mode, Night mode, Frost/heat Protection mode) corresponding to different setpoint temperature.</td>
</tr>
<tr>
<td>Fan (Relay or 0-10v)</td>
<td>3-speed fan, Automatic or manual fan control</td>
</tr>
<tr>
<td>Heating valve (Relay or 0-10v)</td>
<td>Base settings for heating valve (Electrothermal valve or Proportional valve)</td>
</tr>
<tr>
<td>Cooling valve (Relay or 0-10v)</td>
<td>Base settings for cooling valve (Electrothermal valve or Proportional valve)</td>
</tr>
<tr>
<td>Heating/Cooling valve (Relay or 0-10v)</td>
<td>Base valve settings for 2-pipe systems (Electrothermal valve or Proportional valve)</td>
</tr>
<tr>
<td>Function status</td>
<td>Response fan status and valve position status</td>
</tr>
<tr>
<td>Floor heating</td>
<td>---</td>
</tr>
<tr>
<td>Slave clock</td>
<td>Used for floor heating time synchronized.</td>
</tr>
<tr>
<td>Actual temperature</td>
<td>Read actual temperature via the KNX/EIB or local sensor, response and monitoring the temperature</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Base setting for the operation mode setpoint temperature.(Normal mode, Day mode, Night mode, Timer mode)</td>
</tr>
<tr>
<td>Valve</td>
<td>Base settings for floor heating valve</td>
</tr>
</tbody>
</table>
Switch controller

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of auxiliary relay</td>
<td></td>
</tr>
<tr>
<td>Staircase lighting</td>
<td></td>
</tr>
<tr>
<td>ON/OFF delay</td>
<td></td>
</tr>
<tr>
<td>Statistics total</td>
<td></td>
</tr>
<tr>
<td>ON time</td>
<td></td>
</tr>
<tr>
<td>Voltage recovery state</td>
<td></td>
</tr>
<tr>
<td>Voltage fail state</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Function parameter “General”

![Fig. 1: “General” parameter window](image)

In the parameter of the general windows can set the control mode and other parameters.

--- **Sending and switching delay after bus voltage recovery [3..100s]**

Options: 3…100s

Telegram are only received during the send and switching delay. The telegrams are not processed, however, and the outputs remain unchanged. After the sending and switching delay, telegrams are sent and the state of the outputs are set to correspond to the parameterisation or the communication object values.
--- Cycle send general telegram (1..65535s,0-invalid)
 The range of the parameter is 0 to 65535s. Zero of parameter disable
 the function, other of parameter enable this function

 Options: 0…65535s

 The parameter set to nonzero, Device will send a telegram data
cyclically when time out. Send the value alternately between 0 and 1.

Control mode
--- Supported functions
 In the General parameter window, the basic settings for the Fan Coil Unit
 Controller which affect the device and all its outputs can be defined.
 The Fan Coil Unit Controller has five control modes. You can select the one
 of them. Through functional selection and download the database to
 the device, and device will work in accordance with the selected
 function.

 Options: Fan
 Heating
 Cooling
 Heating and cooling
 Floor heating

 Fan: The Fan Coil Unit Controller has fan function only. The free channels
 are available as independent switch outputs.

 Heating: The Fan Coil Unit Controller has fan and heating functions. The
 free channels are available as independent switch outputs.

 Cooling: The Fan Coil Unit Controller has fan and cooling functions. The
 free channels are available as independent switch outputs.

 Heating and cooling: The Fan Coil Unit Controller has fan, heating and
 cooling functions. The free channels are available as independent switch
 outputs.

 Floor heating: The Fan Coil Unit Controller has maximum seven channels
 floor heating. The free channels are available as independent switch
 outputs.

 Fan, Heating or Cooling functions are the same with Heating and Cooling
 functions. So, the following paragraph will description of the Heating and
 Cooling and Floor heating functions in detail.
3.3 Function parameter “Heating and Cooling”

Fig.2: “Heating and Cooling” 2-pipe system parameter window

Fig.3: “Heating and Cooling” 4-pipe system parameter window
--- HVAC-System
Options: 2-pipe system
4-pipe system

2-pipe system: There is one single water circuit that is filled with cooling or heating medium according to the season. The following points must be observed for use in a 2 pipe heating/cooling system:
• In the 2-wire system heating and cooling mediums (depending on the season) are fed through the same channels and controlled by the same valve.
• The switchover between heating and cooling mediums is performed by the system and must therefore be passed on to the controller.

Fig.4: 2-pipe system

4-pipe system: The system consists of two separate water circuits for heating and cooling

Fig.5: 4-pipe system

--- Fan channel select
The Fan Coil Unit Controller has two ways of the fan channel output. According to the fan characteristic choose corresponding channel.

Options: Channel A-C (relay)
Channel F (0-10V)

Channel A-C (relay): Channels A, B and C with 3-Speed fan relay output. The free channels are available as independent switch outputs.
Channel F (0-10V): This channel is an analogue signal (0-10 V) used to controls fan speed.
--- Heating/Cooling valve channel select
Only warm or only cold water is supplied centrally to the pipe system (2-pipe system). Depending on this setting one control value acts on one valve. According to the valve characteristic choose corresponding channel.

Options: Channel E (relay)
 Channel G (0-10V)

Channel E (relay): This channel is relay output, suitable for electrothermal valve drives.
Channel G (0-10V): This channel is an analogue signal (0-10 V) output, suitable for proportional valve drives.

--- Heating valve channel select
Only warm water is supplied centrally to the pipe system (4-pipe system or heating only system). According to the valve characteristic choose corresponding channel.

Options: Channel E (relay)
 Channel G (0-10V)

Channel E (relay): This channel is relay output, suitable for electrothermal valve drives.
Channel G (0-10V): This channel is an analogue signal (0-10 V) output, suitable for proportional valve drives.

--- Cooling valve channel select
Only cold water is supplied centrally to the pipe system (4-pipe system or cooling only system). According to the valve characteristic choose corresponding channel.

Options: Channel D (relay)
 Channel F (0-10V)

Channel D (relay): This channel is relay output, suitable for electrothermal valve drives.
Channel F (0-10V): This channel is an analogue signal (0-10 V) output, suitable for proportional valve drives.
Controller setting for heating/cooling (PI control)

--- Heating speed (for PI)
if you have sufficient knowledge in heating technology so that the appropriate settings are carried out correctly. The options are suitable for standard applications. It is only effective in valve types of control is "PWM control" or "Continuous-acton control"

Options: Lower
Low
Medium
Fast
Faster

Lower: Setting the PI controller response to lower for heating.
Low: Setting the PI controller response to low for heating.
Medium: Setting the PI controller response to medium for heating.
Fast: Setting the PI controller response to fast for heating.
Faster: Setting the PI controller response to faster for heating.

--- Cooling speed (for PI)
if you have sufficient knowledge in cooling technology so that the appropriate settings are carried out correctly. The options are suitable for standard applications. It is only effective in valve types of control is "PWM control" or "Continuous-acton control"

Options: Lower
Low
Medium
Fast
Faster

Lower: Setting the PI controller response to lower for cooling.
Low: Setting the PI controller response to low for cooling.
Medium: Setting the PI controller response to medium for cooling.
Fast: Setting the PI controller response to fast for cooling.
Faster: Setting the PI controller response to faster for cooling.
3.3.1 Actual temperature

--- Sensor for measuring the actual temperature
(AverageValue = Sum / Count)
Setting the temperature sensor.
Options: Local sensor (0 < Count <= 7)
 One sensor via EIB (Count = 1)
 Two sensor via EIB (Count = 2)

Local sensor (0 < Count <= 7): the temperature sensor TS/C 1.0 is must connected to the Fan Coil Unit Controller. Maximum can connect seven temperature sensor, the results take the average (AverageValue = Sum / Count). In this case, the three parameters for Sending of the actual temperature become visible.

Fig.7: “Local sensor (0 < Count <= 7)”
One sensor via EIB (Count = 1): The temperature is received via the KNX/EIB. Object 10 is the information input for KNX/EIB sensors.

![Fig.8: “One sensor via EIB (Count = 1)”](image)

Two sensor via EIB (Count = 2): The temperature is received via the KNX/EIB. Object 10 and 11 are the information input for KNX/EIB sensors. The results take the average (AverageValue = Sum / Count).

![Fig.9: “Two sensor via EIB (Count = 2)”](image)

--- Temperature 1 correction value (-5..5 °C)
Options [°C]: -5.0…5.0 (0.0)

Correction of the value measured by the temperature sensor TS/C 1.0 or the actual value received via the KNX/EIB.

--- Temperature 2 correction value (-5..5 °C)
Options [°C]: -5.0…5.0 (0.0)

Correction of the value measured by the actual value received via the KNX/EIB. This parameter is only visible if the option “Two sensor via EIB (Count = 2)” has been selected for the parameter Sensor for measuring the actual temperature (AverageValue = Sum / Count).

Sending of the actual temperature
--- Cyclical sending
Options: NO
YES

Activation of the cyclical transmission function for the actual temperature. This parameter is only visible if the option “Local sensor (0 < Count <= 7)” has been selected for the parameter Sensor for measuring the actual temperature (AverageValue = Sum / Count).
→ Period for cyclical sending (1..255 s)
Options: 1..255s (2)

Setting the cyclical transmission period for the actual temperature. This parameter is only visible if the option “YES” is selected for the parameter Cyclical sending.

→ Differential value for sending (°C)
Options: 0.5..3 (1)

Setting the temperature change at which the actual temperature is sent in addition to being sent after a change in value. This parameter is only visible if the option “Local sensor (0 < Count <= 7)” has been set for the parameter Sensor for measuring the actual temperature(AverageValue = Sum / Count).

--- Read temperature cyclically via EIB
Options: NO
YES

Activation of the cyclical reading function for the actual temperature via KNX/EIB. This parameter is only visible if the option “One sensor via EIB (Count = 1)” or “Two sensor via EIB (Count = 2)” is set for the parameter Sensor for measuring the actual temperature(AverageValue = Sum / Count).

--- → Period for cyclical reading (1..255 s)
Options: 1..255s (2)

Setting the cyclical reading period for the actual temperature via KNX/EIB. This parameter is only visible if the option “YES” is selected for the parameter Read temperature cyclically via EIB.

Monitoring of actual temperature
--- Monitoring period of actual temperature (2..255 min)
Options: 2..255 min (2)

Setting the monitoring period for the actual temperature (local temperature sensor or via the KNX/EIB).

--- Sending of error signal cycles (1..255, 0-Unlimited)
Options: 0..255 (0)

For setting the send repetition in the event of an error message. If the option “1..255” is selected, the error signal is only sent 1..255 counts if there is a change in the object value. If the option “0-Unlimited” is set, the object value is sent according to the parameterised Monitoring period of actual temperature (2..255 min).
3.3.2 Setpoint

--- Base setpoint temperature (10..35 °C)

Options: 10..35 °C (25)

Setting the base setpoint temperature. This is stored in non-volatile memory. Can be modified with a telegram to the communication object “Setpoint – Base setpoint temperature”.

--- Insensitive zone between heating and cooling (1..10 °C)

Options: 1..10 °C (5)

Setting the insensitive zone in degrees centigrade. The insensitive zone is a buffer area between heating and cooling operation. Neither heating nor cooling takes place within this insensitive zone. Without this buffer zone, the system would switch continuously between heating and cooling. As soon as the set point value has been under-run, the heating is activated and the set point value would not be achieved. If cooling were then to be started immediately, the temperature would fall below the set point value and switch on the heating again. This parameter is only visible if the option “4-pipe system” is selected for the parameter HVAC-System.
--- Controller status at power on
 Options: Unchanged
 Comfort mode
 Standby mode
 Night mode
 Frost/heat protection

When the installation is switched on, the device is set to the required HVAC mode. During operation, a selection can be made via the KNX/EIB. The ON commands are entered via the following objects:
 Comfort mode 31
 Standby mode: 32
 Night mode: 33
 Frost protection: 34

--- Extended comfort mode time (2..255 min)
 Options: 2..255 min (2)

Setting the duration of the comfort extension mode. If the device has been switched from comfort mode to night mode, the comfort extension is activated for the parameterised time by a telegram to the communication object “HVAC mode– ON command for comfort mode” and then switched back automatically to night mode.

Heating
--- Reduced heating in standby mode (0..10 ºC)
 Options: 0..10 ºC (2)

For setting the temperature reduction when heating in standby mode. The reduction in temperature is calculated starting with the base setpoint temperature.

--- Reduced heating during the night mode (0..10 ºC)
 Options: 0..10 ºC (4)

For setting the temperature reduction when heating during night mode. The reduction in the temperature is calculated starting with the base setpoint temperature.

--- Actual temperature threshold in frost protection mode (2..10 ºC)
 Options: 2..10 ºC (7)

Setting the minimum frost protection temperature. When this temperature is reached, the heating is automatically turned up to prevent the temperature falling below the threshold value.
--- Limit value for maximum setpoint heating (5..45 °C)
 Options: 5..45 °C (35)

Setting the maximum setpoint temperature for heating. The room is not heated above this temperature.

Cooling
--- Increased cooling in standby mode (0..10 °C)
 Options: 0..10 °C (2)

For setting the temperature increase when cooling in standby mode. The increase in temperature is calculated starting with the base setpoint temperature.

--- Increased cooling during the night mode (0..10 °C)
 Options: 0..10 °C (4)

For setting the temperature increase when cooling during night mode. The increase in the temperature is calculated starting with the base setpoint temperature.

--- Actual temperature threshold in heat protection mode (35..40 °C)
 Options: 35..40 °C (40)

Setting the maximum heat protection temperature. When this temperature is reached, the cooling is automatically switched on to prevent the threshold value from being exceeded.

--- Limit value for minimum setpoint cooling (5..45 °C)
 Options: 5..45 °C (15)

Setting the minimum setpoint temperature for cooling. The room is not cooled below this temperature.

The toggling between the HVAC modes is carried out via communication objects:

Fig.11: HVAC mode selection via communication objects
Object 31: HVAC mode – ON CMD for comfort mode
Object 32: HVAC mode – ON CMD for standby mode
Object 33: HVAC mode – ON CMD for night mode
Object 34: HVAC mode – ON CMD for building protection (Frost/Heat protection) mode
Time out: Parameterised *Extended comfort mode time* has elapsed

The difference between comfort mode and comfort extension is that the toggling from comfort mode to another mode is triggered via a communication object while switching from comfort extension mode to another mode also takes place automatically once the parameterized *Extended comfort mode time* has elapsed.

Calculation of the setpoints for the various HVAC modes:

Comfort mode:
- Heating setpoint temperature = Base setpoint temperature
- Cooling setpoint temperature = Base setpoint temperature

In the 4-pipe system automatic heating/cooling mode:
- Cooling setpoint temperature = Base setpoint temperature + Insensitive zone

Standby mode:
- Heating setpoint temperature = Base setpoint temperature - Reduced heating in standby mode
- Cooling setpoint temperature = Base setpoint temperature + Increased cooling in standby mode

In the 4-pipe system automatic heating/cooling mode:
- Cooling setpoint temperature = Base setpoint temperature + Insensitive zone + Increased cooling in standby mode

Night mode:
- Heating setpoint temperature = Base setpoint temperature - Reduced heating during night mode
- Cooling setpoint temperature = Base setpoint temperature + Increased cooling during night mode

In the 4-pipe system automatic heating/cooling mode:
- Cooling setpoint temperature = Base setpoint temperature + Insensitive zone + Increased cooling during night mode

Frost/Heat protection:
- Heating setpoint temperature = Threshold value for frost protection
- Cooling setpoint temperature = Threshold value for heat protection
The setpoint temperature is restricted by the setpoint limit value. The setpoint limit for heating defines the maximum temperature for heating the room. The setpoint limit for cooling defines the minimum temperature for cooling the room.

3.3.3 Fan

The fan coil actuator can be adapted very flexibly to the specific fan coil application required by means of parameter configurations. Thus initially the number of fan level required for the connected devices can be defined. Fan coil actuator has two channel can choose, one of channel is a relay output, the other is an analogue signal (0-10 V) output. According to the fan characteristic choose corresponding channel.

Fan speed relay output

Setting the number of fan speeds. This parameter is only visible if the option "Channel A-C (relay)" has been selected for the parameter *Fan channel select*. The maximum number of usable fan levels depends on this parameter. In the configuration with *Channel A-C (relay)* a maximum of 3 fan levels can be used. Fan level outputs of a fan coil channel which are not used can optionally be used as switching outputs with a simple switching function.

Options: 1-Speed fan

2-Speed fan

3-Speed fan
1-Speed fan: The fan has only 1-speed connect to the channel A (Channel A -> Speed 1).

2-Speed fan: The fan has 2-speed connect to the channel A and channel B (Channel A -> Speed 1, Channel B -> Speed 2).

3-Speed fan: The fan has 3-speed connect to the channel A, channel B and channel C (Channel A -> Speed 1, Channel B -> Speed 2, Channel C -> Speed 3).

--- Fan speed 1 voltage (0-10V)
--- Fan speed 2 voltage (0-10V)
--- Fan speed 3 voltage (0-10V)

Options: 0v..10v

Setting the voltage of fan speeds. This parameter is only visible if the option “Channel F (0-10v)” has been selected for the parameter Fan channel select. The fan has connect to the channel F.

--- Fan speed on bus voltage failure
Options: Unchanged
 OFF

The behavior of the fan with a bus voltage failure is defined here.

unchanged: The fan speeds of the fan remain unchanged.
OFF: The fan is switched off.
--- Fan speed on bus voltage recovery
 Options: Recovery
 OFF
 1
 2
 3

Set the speed of the fan when voltage recovery.

Recovery: After bus voltage recovery, the fan speed will be back to the speed of the power-down previous.

Off: The fan will switch OFF after bus voltage recovery.

1, 2 or 3: The fan switches to fan speed 1, 2 or 3.

--- Fan switch-on delay (0..255 s)
 Options: 0..255

Set the delay of switch-on. The range is 0…255.

--- Fan switch-off delay (0..255 s)
 Options: 0..255

Set the delay of switch-off. The range is 0…255.

--- Starting characteristic of fan
 Options: Switch on at speed 1
 Switch on at speed 2
 Switch on at speed 3

Setting the speed at which the fan switches on. To ensure that the fan motor starts reliably, it is advisable to start at a higher speed initially, depending on the type, in order to maintain a higher torque at start-up. Once the Minimum delay at starting speed has elapsed, the fan is switched to the speed that corresponds to the control value. Fig. 7 shows an example of the response for the option “switch on at speed 3”.

![Diagram](image)

Fig.14: Switch fan on at speed 3
--- Minimum delay at starting speed (2...255s)
Options: 2...255s

The starting time of the fan is entered here which can vary from fan to fan depending on the inertia of the rotating components.

--- Changeover delay between fan speeds (s)
Options: 0.5...10s

Setting the changeover delay between the fan speeds. This parameter is only effective if the option “Channel A-C (relay)” has been set for the parameter Fan channel select.

--- Minimum duration time on fan speed (2...255 s)
Options: 2...255s

Used to prevent frequent toggling between fan speeds which can be detrimental to comfort levels.

--- Enable limitations (Automatic fan control)
Options: Disable
 Enable

Disable: Disable the fan limitations function.
Enable: Further parameters become visible, set as follows

![Fig.15: Enable limitations (Automatic fan control)](image_url)
At the same time, four communication objects for limitation of the fan speed are enabled:

- **Limitation 1**, e.g. for frost/heat protection
- **Limitation 2**, e.g. for comfort operation
- **Limitation 3**, e.g. for night shutdown
- **Limitation 4**, e.g. for standby operation

Speed ranges (limitations) are defined for the fan with the speed limitation function that may not be exceeded or undershot. Four limitations are available. This can be used for example for the control of various operating modes, e.g. frost/heat protection, comfort, night shut down and standby. In normal cases the thermostat takes these operating modes into account in its control variable for the actuator.

Important

The parameterised starting behaviour which is a technical characteristic of the fan has a higher priority than a limitation operation, i.e. if a limitation is activated in fan speed 2 and a start-up behaviour is parameterised via fan speed 3, the following behaviour will result: The fan is in the OFF state and receives a control signal for fan speed 1. Initially the fan operates at fan speed 3 (start-up speed) and then proceeds to fan speed 2 which is defined by the limitation. The actual required fan speed 1 will not be achieved due to the limitation.

When automatic mode is exited, e.g. by a manual action, the limitations become inactive. The set limitations are reactivated after automatic operation is reactivated.

The following points apply for limitations:
- The fan speed and valve position can be parameterised independently.
- The limitation need not necessarily apply to one fan speed only. It can also encompass another range of the fan speeds, i.e. only certain fan speeds can be set if the limitation is active. In this way a limited control is also possible.
- The limitation is activated if a telegram with the value 1 is received on the limitation object. The limitation is deactivated if a telegram with the value 0 is received on the limitation object. A manual action ends automatic mode.
- If a limitation is activated, the Fan Coil Controller switches to the parameterised fan speed regardless of the control value. If during the activation of the limitation another fan speed or a fan speed outside the range of the "limitation range" is set, the required fan speed or the limit fan speed of the range is set.
- After switch off of the limitations, the fan speed and the communication objects for valve control are recalculated and executed. This means that during limitation the actuator operates normally in the background, the
outputs are not changed and implementation only occurs after the end of limitation.

There are the same parameters and priority for each of the individual four limitations used to limit the fan speeds. If several ON commands 1 are received by the various fan speed limitation objects, the value that was last received for the fan limitation control is decisive. This also applies for the OFF command 0.

--- Speed with limitation 1
--- Speed with limitation 2
--- Speed with limitation 3
--- Speed with limitation 4

Options: 3, 2, 1, OFF
unchanged
OFF
1
1, OFF
2
2, 1
2, 1, OFF
3
3, 2
3, 2, 1

With this parameter you set the fan speed that is set with active limitation, and the fan speed is set with automatic control.

3, 2, 1, OFF: Everything is possible.
Unchanged: The state is retained.
OFF: Off.
1: limited to speed 1.*
1, OFF: limited to speed 1 and off.
2: limited to speed 2.*
2, 1: limited to speed 2 and 1.
2, 1, OFF: limited to speed 2, 1 and off.
3: limited to speed 3.*
3, 2: limited to speed 3 and 2.
3, 2, 1: limited to speed 3, 2 and 1.
Note: * The control value is ignored.
3.3.4 Valve

The Fan Coil Unit Controller can control the following valve drives:

* Electromotive valve drives: Electromotive valve drives close and open valves via a small electric motor. It is available as proportional valve drives. Proportional valve drives are controlled via an analogue signal (0...10 V).

* Electrothermal valve drives: Electrothermal valve drives are adjusted via the heat expansion of a material as a result of a flow of electrical current. Electrothermal valve drives are regulated via two-step control or pulse width modulation.

3.3.4.1 Heating/Cooling valve (relay)

![Heating/Cooling valve (relay) parameter window](image)

Fig.16: "Heating/Cooling valve (relay)" Two-step(ON/OFF) control parameter window

This parameter window is only visible if the option "Channel E(relay)" has been selected for the parameter Heating/Cooling valve channel select in the 2-pipe system.
The parameter windows “Heating/Cooling valve (relay)”, “Heating valve (relay)” and “Cooling valve (relay)” are largely similar. Only the default values for the cycle time differ from each other.

---Types of control

Options:
- **Two-step(ON/OFF) control**
- **PWM control**

Two-step(ON/OFF) control: the valve is fully opened if the room temperature falls below a lower limit value while the valve is fully closed if the room temperature exceeds an upper limit value. This types of control is not used PI control.

- Upper limit value = Setpoint temp. + 1°C
- Lower limit value = Setpoint temp. – 1°C
PWM control: The control value is fixed for a cyclic period and converted into the valve opening duration. For example, the control value 20% is converted at a cyclic period of 15 minutes into a valve opening time of 3 minutes. The control value 50% produces a valve opening time of 7.5 minutes. This type of control is used PI control. In the following fig19. is the PWM control diagram:
---Valve type
Options: Inverted (de-energized opened)
Normal (de-energized closed)

Setting the control direction of the valve.

---Reaction on bus voltage failure
Options: Contact unchanged
Contact open
Contact closed

Contact unchanged: No change of the contact position.
Contact opened: The contact is opened with bus voltage failure.
Contact closed: The contact is closed with bus voltage failure.

---Enable valve purge
Options: NO
Yes

NO: Disable valve purge.
YES: The 1 bit Trigger valve purge communication object is enabled.
With this parameter, the function of a valve purge of the output can be enabled. Regular purging of a heating valve can prevent deposits from forming in the valve area and restricting the valve function. At the same time it is assured that the heating element is purged which simplifies the bleeding of trapped air. This is particularly important at times when the valve position does not change very much. The valve is opened to the maximum during a valve purge. It can be triggered via the object Trigger valve purge and/or automatically at adjustable intervals. With the option yes, the objects Trigger valve purge and Status valve purge are enabled. Also the parameter Time of valve purge in minutes (1...255) and Automatic valve purge are enabled.

---Time of valve purge(1..255min)
Options: 1..255min

Set the time for the valve purge. In this time the valve is fully opened. When the time has elapsed, the state before the purge is re-established.
Automatic valve purge

Set the automatic valve purge frequency.

Options: NO
- One times per day
- One times per week
- One times per month

One times per day: Automatic valve purge every day.
One times per week: Automatic valve purge every week.
One times per month: Automatic valve purge every month.

A purge can be initiated by the object Trigger valve purge. The counter for automatic purging starts to run when the parameter is loaded in the actuator. The time is reset each time it is downloaded. The time is reset as soon as purging is completed. This can occur either through automatic purging or via the object Trigger valve purge.

The following paragraph will description of the PWM control of the valve type in detail.

![PWM control parameter window](image)

Fig.21: “Heating/Cooling valve (relay)” PWM control parameter window
Fig.22: “Heating valve (relay)” PWM control parameter window

The parameter windows “Heating/Cooling valve (relay)”, “Heating valve (relay)” and “Cooling valve (relay)” with the both of control type functions are largely similar. Only the following functions differ from each other.

---PWM Cycle time(1..30min)
This is used to set the cycle time of the PWM control.
Options: 1..30min

An actuation cycle consists of one on and one off process and forms a PWM period. Example: Actuating value= 20%, PWM time = 10 min: In an actuating cycle of 10 min, 2 min switched on and 8 min switched off (i.e. 20% on/ 80% off). To fully open an electrothermal control valve takes approximately 2-3 minutes. That is why a cycle time of less than 15 minutes is not practical.

If a PWM cycle time of 15 minutes has been selected, this means that 4 switching operations (switching on/off) occur each hour. 96 in a day; 3000 in a month. About 36,000 switching operations are achieved annually. With a relay life of 10^5 switching operations, this means a switch actuator life of less than 3 years.
If however, the cycle time is set to just 3 minutes, this means about 150,000 switching operations annually, which normally means the life of the switch actuator would be less than a year. This observation assumes an AC1 (practically ohmic load) switch loading at rated current. If the maximum number of switching operations for a purely mechanical relay loading is assumed, the life of the switch actuator is extended. This has an inherent risk, as the contact materials will wear prematurely and cannot safely guarantee conduction of current.

In the following table, conventional cycle times for control of various heating and air-conditioning systems are listed:

<table>
<thead>
<tr>
<th>Heating system</th>
<th>Control type</th>
<th>Cycle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot water</td>
<td>PWM</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Supply temperature 45 °C – 70 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot water</td>
<td>2-step</td>
<td>-</td>
</tr>
<tr>
<td>Supply temperature < 45 °C</td>
<td>PWM</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Underfloor/wall heating</td>
<td>PWM</td>
<td>30-20 minutes</td>
</tr>
<tr>
<td>Electric underfloor heating</td>
<td>PWM</td>
<td>30-20 minutes</td>
</tr>
<tr>
<td>Electric fan heating</td>
<td>2-step</td>
<td>-</td>
</tr>
<tr>
<td>Electric convection heating</td>
<td>PWM</td>
<td>10-15 minutes</td>
</tr>
<tr>
<td></td>
<td>2-step</td>
<td>-</td>
</tr>
</tbody>
</table>

---Minimum heating
Options: 0%, 5%, 10%, 15%, 20%,

Minimum permissible valve setting with actuating value.
3.3.4.2 Heating/Cooling valve (0-10v)

Fig.24: “Heating/Cooling valve (0-10v)” parameter window
This parameter window is only visible if the option “Channel G(0-10v)” has been selected for the parameter Heating/Cooling valve channel select in the 2-pipe system.

Fig.25: “Heating valve (0-10v)” parameter window
The parameter windows “Heating/Cooling valve (0-10v)” , “Heating valve (0-10v)” and “Cooling valve (0-10v)” are largely similar.

---Types of control
Options:
- **ON(10V)/OFF(0V) control**
 - Continuous-action control

ON(10V)/OFF(0V) control: the valve is fully opened (10v) if the room temperature falls below a lower limit value, while the valve is fully closed (0v) if the room temperature exceeds an upper limit value. This types of control is not used PI control. It used the same with Two-step(ON/OFF) control.

 - Upper limit value=Setpoint temp. + 1°C
 - Lower limit value=Setpoint temp. – 1°C

Continuous-action control: A continuous controller has a continuously changing control value which can output voltage between 0v to 10v, it can be used to activate proportional valve drives. The valve can thereby be fully opened, fully closed and moved to any intermediate position. This types of control is used PI control.

---Valve type
Options:
- **Inverted**(de-energized opened)
- **Normal**(de-energized closed)

Setting the control direction of the valve.

---Valve adjustment
User-defined adjustment of the valve characteristics.
Options:
- **Disable**
- **Enable**

Disable: Disable the valve adjustment.

Enable: Enable the valve adjustment.

Only select the option “Enable” if you have sufficient knowledge in heating and cooling technology so that the appropriate settings are carried out correctly. The option “Disable” is suitable for standard applications.

--- Lower limit for active valve opening range (0..100%)
--- Upper limit for active valve opening range (0..100%)
Options: 0..100%

For setting the valve characteristic curve i.e. the valve position dependent on the control value.
---Enable valve purge
Options: NO

Yes

NO: Disable valve purge.
YES: The 1 bit Trigger valve purge communication object is enabled
With this parameter, the function of a valve purge of the output can be
enabled. Regular purging of a heating valve can prevent deposits from
forming in the valve area and restricting the valve function. At the same
time it is assured that the heating element is purged which simplifies the bleeding
of trapped air. This is particularly important at times when the valve position
does not change very much. The valve is opened to the maximum during a
valve purge. It can be triggered via the object Trigger valve purge and/or
automatically at adjustable intervals. With the option yes, the objects
Trigger valve purge and Status valve purge are enabled. Also the parameter
Time of valve purge in minutes (1..255) and Automatic valve purge are
enabled.

Fig.26: Enable valve purge

--->Time of valve purge(1..255min)
Options: 1..255min

Set the time for the valve purge. In this time the valve is fully opened. When
the time has elapsed, the state before the purge is re-established.

--->Automatic valve purge
Set the automatic valve purge frequency.

Options: NO

One times per day
One times per week
One times per month

One times per day: Automatic valve purge every day.
One times per week: Automatic valve purge every week.
One times per month: Automatic valve purge every month.
A purge can be initiated by the object Trigger valve purge. The counter for
automatic purging starts to run when the parameter is loaded in the actuator.
The time is reset each time it is downloaded. The time is reset as soon as
purging is completed. This can occur either through automatic purging or via
the object Trigger valve purge.
3.3.5 Function statue

--- Enable 1Bit object “Status fan speed x” (x:1,2,3)

Options: NO

Yes

Set the enable of the response about the fan speed’s status.

NO: There is not response.

Yes: Three 1 bit communication objects, *Status fan speed x*, x = 1 to 3 are enabled.

--- **Meaning**

This parameter defines whether the status of the *current fan speed* or the *required fan speed* is displayed.

Options: **Current fan speed**

Required fan speed

--- **Set the enable of the response about the fan speed’s status**

--- **Meaning**

This parameter defines whether the status of the *current fan speed* or the *required fan speed* is displayed.

Options: **Current fan speed**

Required fan speed

--- **Function status**

Fig. 27: “Function status” parameter window

--- Enable 1Bit object “Status fan speed x” (x:1,2,3)

Options: NO

Yes

Set the enable of the response about the fan speed’s status.

NO: There is not response.

Yes: Three 1 bit communication objects, *Status fan speed x*, x = 1 to 3 are enabled.

--- **Meaning**

This parameter defines whether the status of the *current fan speed* or the *required fan speed* is displayed.

Options: **Current fan speed**

Required fan speed

--- **Fig. 28: 1Bit fan speed status**

--- **Meaning**

This parameter defines whether the status of the *current fan speed* or the *required fan speed* is displayed.

Options: **Current fan speed**

Required fan speed
Current fan speed: it response the fan speed is actually operating.

Required fan speed: it response the fan speed has to be achieved.

--- **Send object value**

Options: No, update only
- Always response
- Only after change

No, update only: The status byte is always updated but never sent.

Always response: The status byte is always sent regardless whether the status changes.

Only after change: Status changes are sent to the status bit on the KNX.

--- **Enable 1Byte object “Status fan speed”**

This status byte defines the figure value of the fan speed.

Options: NO
- Yes

Yes: The object *Status fan speed* is enabled. This status byte defines the numerical value of the fan speed. This can be the actual or target speed depending on the parameterisation.

The following value assignment is applied:

<table>
<thead>
<tr>
<th>1-byte values</th>
<th>Hexadecimal</th>
<th>Binary value</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00000000</td>
<td>0(off)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00000001</td>
<td>Speed 1</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>00000010</td>
<td>Speed 2</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>00000011</td>
<td>Speed 3</td>
</tr>
</tbody>
</table>

With the enabling of the 1-byte status display *Status fan speed*, two further parameters appear:

--- **Meaning**

This parameter defines whether the status of the current fan speed or the required fan speed is displayed.

Options: Current fan speed
- Required fan speed

Current fan speed: it response the fan speed is actually operating.

Required fan speed: it response the fan speed has to be achieved.
--- Send object value
Options: No, update only
 Always response
 Only after change

No, update only: The status byte is always updated but never sent.
Always response: The status byte is always sent regardless whether the status changes.
Only after change: Status changes are sent to the status bit on the KNX.

--- Enable 1Bit object “Status fan On/Off”
Options: NO
 Yes

NO: there is not response.
Yes: it response the fan speed status On or Off.

Some fans initially require an ON telegram before they are set to a fan speed from the OFF state. This ON telegram effects a main switch which has to be switched on.

This demand can be implemented with any switch output which is controlled via the Status fan communication object. The corresponding switch communication object of the switch actuator should be connected with the Status fan communication object.

Fig. 30: 1Bit fan speed ON/OFF status

--- Send object value
Options: No, update only
 Always response
 Only after change

No, update only: The status is always updated but not sent.
Always response: The status is always sent regardless whether the status changes.
Only after change: Status changes are sent to the status bit on the KNX.

--- Enable 1Bit object “Status fan speed automatic”
Options: NO
 Yes
NO: There is not response.

Yes: It response the fan speed automatic status.

--- Enable 1Bit object “Status fan speed automatic”
--- Send object value

Options:

No, update only

Always response

Only after change

No, update only: The status is always updated but not sent.

Always response: The status is always sent regardless whether the status changes.

Only after change: Status changes are sent to the status bit on the KNX.

--- Enable 1Bit object “Heating valve position status”
--- Enable 1Bit object “Cooling valve position status”

Options: NO

Yes

NO: there is not response.

Yes: it response the valve position status.

--- Send object value

Options: No, update only

Only after change

No, update only: The status is always updated but not sent.

Only after change: Status changes are sent to the status bit on the KNX.

--- Object value with valve position >0

Options: ‘0’

‘1’
3.4 Function parameter “Floor Heating”

Fig.33: “Floor Heating” parameter window

Setting the functions of the floor heating. This parameter is only visible if the option “Floor Heating” has been selected for the parameter Supported functions. It can be configured maximum seven channels and parameterised independently. Each channels can be read the temperature via the KNX/EIB or the local temperature sensors.

---Enable slave clock
Options: Disable

 Enable

Disable: Disable the slave clock.
Enable: Enable the slave clock, only used for timer mode. At the same time, three communication objects for activation of the slave clock are enabled. The local clock of slave system clock shall be synchronised by reception of a ‘System Clock’ information from the master system clock.
3.4.1 Channel A (Floor heating)

Each channel (A,B,C,D,E) output of the Floor heating are independent and the same. So, Understand only one channel output is enough. The following paragraph will description of the first channel output in detail.

--- Channel A work mode

Options: Inactive
Floor heating
Switch controller

Inactive: The channel inactive.
Floor heating: The channel is used to floor heating.
Switch controller: The channel is used to switch controller.

If the channel select the floor heating, the following parameter will appears.

--- Sensor for measuring the actual temperature

Options: Local sensor
Via EIB

Local sensor: The temperature sensor TS/C 1.0 is must connected to the Fan Coil Unit Controller. One local temperature sensor corresponds to one channel. In this case, some parameters for local sensor become visible.
Via EIB: The actual temperature is get from the other devices via KNX/EIB. One temperature sensor object corresponds to one channel. In this case, some parameters for KNX/EIB temperature sensor become visible.

Local sensor:
--- Temperature sensor serial number (1..255)
Options: 1..255

Each temperature sensor TS/C 1.0 has a serial number. The number is the temperature sensor’s address and can not same on the M/FCU01.10.1.

--- Temperature correction value (-5..5°C)
Options: -5…5

Correction of the value measured by the temperature sensor TS/C 1.0.

Sending of the actual temperature:
--- Cyclical sending
Options: NO
YES

NO: Don't sending the actual local temperature to the KNX/EIB bus.
YES: Sending the actual local temperature to the KNX/EIB bus.

Activation of the cyclical transmission function for the actual local temperature. This parameter is only visible if the option “Local sensor” is set for the parameter Sensor for measuring the actual temperature. The following parameters are visible:
Period for cyclical sending (1..255s)
Options: 1…255s

Setting the cyclical transmission period for the actual temperature.

Differential value for sending (°C)
Options: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Setting the temperature change at which the actual temperature is sent in addition to being sent after a change in value.

Via EIB:
--- Temperature correction value (-5..5°C)
Options: -5…5

Correction of the value measured by the actual temperature received via the KNX/EIB.

--- Read temperature cyclically via EIB
Options: NO, YES

NO: Does not read temperature via EIB.
YES: Read temperature cyclically via EIB.

Activation of the cyclical reading function for the actual temperature via KNX/EIB. This parameter is only visible if the option “Via EIB” is set for the parameter Sensor for measuring the actual temperature.

Period for cyclical reading (1..255s)
Options: 1…255s

Setting the cyclical reading period for the actual temperature via KNX/EIB.

Monitoring of actual temperature:
--- Monitoring period of actual temperature (2…255min)
Options: 2…255min

Setting the monitoring period for the actual temperature (local and via the KNX).
--- Sending of error signal cycles (1..255,0-Unlimited)
Options: 0..255 (0)

For setting the send repetition in the event of an error message. If the option “1..255” is selected, the error signal is only sent 1..255 counts if there is a change in the object value. If the option “0-Unlimited” is set, the object value is sent according to the parameterised Monitoring period of actual temperature (2..255 min).

3.4.1.1 ->Operation mode

Fig.37: “Operation mode” floor heating parameter window

The parameters are the channel A’s floor heating functions.
--- The operation mode after bus voltage recovery
After bus voltage recovery channel A’s operation modes.
Options:
- Recovery
- Normal
- Day
- Night
- Away
- Timer

Recovery: After bus voltage recovery the mode which existed before bus voltage failure is set.
Normal, Day, Night, Away, Time: Each operation mode has different setpoint temperature, you can select the operation mode with the actual situation.

--- Floor heating speed (for PI)
If you have sufficient knowledge in heating technology so that the appropriate settings are carried out correctly. The options are suitable for standard applications.

Options:
- Lower
- Low
- Medium
- Fast
- Faster

Setting the PI controller response for heating. There is 5 speeds for the heating.

Setpoint temperature:
--- Normal mode setpoint temperature(5..35°C)
--- Day mode setpoint temperature(5..35°C)
--- Night mode setpoint temperature(5..35°C)
--- Away mode setpoint temperature(5..35°C)

Options: 5..35

Setting the floor heating’s setpoint temperature. Each operation mode has different setpoint temperature. When you want to change the room temperature only need a simple change operating mode can change to the corresponding temperature.
Timer mode (Preset 1…Preset 3):
Set the floor heating’s timer mode preset (Preset 1, Preset 2, Preset 3).
Each timer mode preset set a different temperature and different start time.
When the slave clock running to any of the preset time, it is working to the corresponding preset mode.

<table>
<thead>
<tr>
<th>Timer mode (Preset 1…Preset 3):</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Preset 1 temperature (5..35°C)</td>
</tr>
<tr>
<td>➔ Start/Stop the floor heating</td>
</tr>
<tr>
<td>➔ Start time for hour (0..23h)</td>
</tr>
<tr>
<td>➔ Start time for minute (0..59 min)</td>
</tr>
<tr>
<td>➔ Preset 2 temperature (5..35°C)</td>
</tr>
<tr>
<td>➔ Start/Stop the floor heating</td>
</tr>
<tr>
<td>➔ Start time for hour (0..23h)</td>
</tr>
<tr>
<td>➔ Start time for minute (0..59 min)</td>
</tr>
<tr>
<td>➔ Preset 3 temperature (5..35°C)</td>
</tr>
<tr>
<td>➔ Start/Stop the floor heating</td>
</tr>
<tr>
<td>➔ Start time for hour (0..23h)</td>
</tr>
<tr>
<td>➔ Start time for minute (0..59 min)</td>
</tr>
</tbody>
</table>

Fig. 38: Timer mode
Preset 2 and preset 3’s settings are same as preset 1.

➔ Preset 1 temperature (5..35°C)
➔ Preset 2 temperature (5..35°C)
➔ Preset 3 temperature (5..35°C)
Options: 5..35

24 hours a day is divided into three preset time corresponding three temperature point, so it in different period of time can automatic switching to different temperature.
➔ Start/Stop the floor heating
Options: Stop
Start

Start or stop the floor heating in current slave clock.
➔ Start time of hour (0..23h)
Options: 0..23

Setting the start time of hour for the preset 1(2,3).
Start time of minute (0..59min)
Options: 0..59

Setting the start time of minute for the preset 1(2,3).

3.4.1.2 ->Valve

--- Valve type
Options: Inverted(de-energized opened)
Normal(de-energized closed)

Setting the control direction of the valve.

--- Reaction on bus voltage failure
Setting the valve position after the bus voltage failure.
Options: Contact unchanged
Contact open
Contact closed

Contact unchanged: The valve remains unchanged at bus voltage failure.
Contact open: The valve remains opened at bus voltage failure.
Contact closed: The valve remains closed at bus voltage failure.

Fig.39: “Valve” floor heating parameter window
--- PWM Cycle time (1..30min)
This is used to set the cycle time of the PWM control.
Options: 1..30min

An actuation cycle consists of one on and one off process and forms a
PWM period. Example: Actuating value= 20%, PWM time = 10 min: In an
actuating cycle of 10 min, 2 min switched on and 8 min switched off (i.e.
20% on/ 80% off).

--- Minimum heating
Options: 0%, 5%, 10%, 15%, 20%

Minimum permissible valve setting with actuating value.

--- Enable 1Bit object Valve position status
Options: NO
Yes

NO: there is not response.
Yes: it response the valve position status.
If you select yes , The following parameters appear:

-> Send object value
Options: No, update only
Only after change

No, update only: The status is always updated but not sent.
Only after change: Status changes are sent to the status bit on the KNX.

-> Object value with valve position>0
Options: '0'
'1'

--- Enable valve purge
Options: NO
Yes

NO: Disable valve purge.
YES: The 1 bit Trigger valve purge communication object is enabled.
With this parameter, the function of a valve purge of the output can be
enabled. Regular purging of a heating valve can prevent deposits from
forming in the valve area and restricting the valve function. At the same
time it is assured that the heating element is purged which simplifies the bleeding
of trapped air. This is particularly important at times when the valve position
does not change very much. The valve is opened to the maximum during a
valve purge. It can be triggered via the object Trigger valve purge and/or
automatically at adjustable intervals. With the option YES, the objects Trigger valve purge and Status valve purge are enabled. Also the parameter Time of valve purge in minutes (1...255) and Automatic valve purge are enabled.

Fig. 40: Valve purge

→ **Time of valve purge(1..255min)**

Options: **1..255min**

Set the time for the valve purge. In this time the valve is fully opened. When the time has elapsed, the state before the purge is re-established.

→ **Automatic valve purge**

Set the automatic valve purge frequency.

Options: **NO**

- **One times per day**
- **One times per week**
- **One times per month**

One times per day: Automatic valve purge every day.

One times per week: Automatic valve purge every week.

One times per month: Automatic valve purge every month.

A purge can be initiated by the object Trigger valve purge. The counter for automatic purging starts to run when the parameter is loaded in the actuator. The time is reset each time it is downloaded. The time is reset as soon as purging is completed. This can occur either through automatic purging or via the object Trigger valve purge.
--- Enable pipe pressure protection when all of floor heating OFF
Options: **NO**

YES

NO: Disable this channel pipe pressure protection.

YES: Enable this channel pipe pressure protection when all of room floor heating turn off.

When all of room floor heating turn off, pipe pressure will increase, easy to cause the damage, so must carry on the timing of the reduced pressure, this process in order to prevent a room temperature is too high, and each channel can timing take turns exhaust pressure work. At the same time only one channel will be open. When one of the room floor heating is turn on, all of the pipe pressure protection will end.

> **Valve open value**
Options: 5%

- 10%
- 15%
- 20%
- 25%
- 30%

Setting the valve’s position open value.

> **Protection time(1..255min,0-Unlimited)**
Options: **0-Unlimited**

- 1..255min

A channel to protect time, when time end turn to the next channel reduced pressure protection. If the option “1..255 min” is selected, the channel is only working 1..255 min then turn to the next channel. If the option “0-Unlimited” is set, the channel is working all the time until one of the room turn on the floor heating.
The floor heating parameter windows “Channel A,B,C,D,E,F,G”, “Operation mode” and “Valve” with the parameter of control functions are largely similar. Only the following functions channel F,G’s valve differ from channel A,B,C,D,E’s valve.

---Valve adjustment
User-defined adjustment of the valve characteristics.
Options: Disable

Enable

Disable: Disable the valve adjustment.
Enable: Enable the valve adjustment.
Only select the option “Enable” if you have sufficient knowledge in heating technology so that the appropriate settings are carried out correctly. The option “Disable” is suitable for standard applications.

→Lower limit for active valve opening range (0..100%)
→Upper limit for active valve opening range (0..100%)
Options: 0..100%

For setting the valve characteristic curve i.e. the valve position dependent on the control value.
3.5 Function parameter “Switch actuator”

![Fig.42: “Channel A work mode of switch controller” parameter window](image)

Each relay channel (A,B,C,D,E) whether in HVAC or floor heating function, no use channel can be configured to switch controller. It can used to control light or other switch products.

More functions setup in this mode, the following section will description detailed of the Switch Actuator mode.

--- **Response if switch state ON/OFF**

This parameter determine the work mode of response

Options:
- **No response**
- **Always response**
- **Only after change**

No response: No response switch state.
Always response: Always response switching state when receive the channel telegram data.
Only after change: Only response switch state of the channel when change state changed.
--- Save statistic for ON switching “time (hour-2bytes)’
This function is used to calculate the total ON time for channel output, The maximum time is 65535h. This function is very useful, Because can know channel work status through this function.
Options: Disable
 Enable

Disable: Disable Statistics ON time.
Enable: Enable Statistics ON time.
→ Alarm when time out(1…65535,0-invalid)
This parameter set the ON time alarm overflow time.
Options: 1..65535h, 0-invalid

When the device's operating time arrive the setting value will alarm. The value rang is 1…65535h, 0 is invalid.
→ Transmit telegram interval when alarm(1…65535,0-invalid)
Options: 1..65535, 0-invalid

Set the alarm time interval.
--- Switch state on bus voltage fail
When bus voltage failure and the function will be executed. Three choices will be available as following:
Options: Unchange
 ON
 OFF

Unchange: The channel switch position unchanged after bus voltage failure
ON: The channel position will be switch ON after bus voltage failure
OFF: The channel position switch OFF after bus voltage failure
--- Switch state after bus voltage recovery
When power on and the bus voltage recovery, This function will be executed. four selection will be available as following:
Options: Unchanged
 Recovery
 ON
 OFF

Unchange: The channel switch position unchanged after bus voltage recovery.
Recovery: After bus voltage recovery, The channel switch position will be back to the state of the power-down previous.
ON: The channel position will switch ON after bus voltage recovery.
OFF: The channel position will switch OFF after bus voltage recovery.
--- Time function
Options: Disable

Staircase lighting

ON/OFF delay

Disable: disable time function.
Staircase lighting: Control staircase light.
ON/OFF delay: This function is including switch ON delay and switch OFF delay.

Staircase lighting:

<table>
<thead>
<tr>
<th>Option</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>->Control staircase lighting</td>
<td>Start with “1”, Stop with “0”</td>
</tr>
<tr>
<td>->Change staircase lighting time via bus</td>
<td>Yes</td>
</tr>
<tr>
<td>->Alarm staircase lighting to bus</td>
<td>Yes</td>
</tr>
<tr>
<td>->Time for off (0.255 Min)</td>
<td>0</td>
</tr>
<tr>
<td>->Time for off (0.59 Sec)</td>
<td>5</td>
</tr>
<tr>
<td>->Warning staircase lighting (ON->OFF->ON)</td>
<td>Yes</td>
</tr>
<tr>
<td>--Warning before the end of time (sec)</td>
<td>3</td>
</tr>
<tr>
<td>--Duration time for warning (sec)</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig.43: Staircase lighting

--- Control staircase lighting
Options: **Start with “1”, Stop with “0”**
Start with “1”, Invalid with “0”
Start with “1/0”, Can’t stop

Start with “1”, stop with “0”: When receive data 1 and the staircase light start run automatic, stop with time out or stop with 0.
Start with “1”, invalid with “0”: When receive data 1 and the staircase light start run automatic, 0 is invalid.
Start with “1/0”, can’t stop: When receive data 1/0 and the staircase light start run automatic, Can’t stop.
--- Change staircase lighting time via bus
Options: NO
 YES

NO: Can’t modify staircase lighting delay off time via bus , only can be set by database.
YES: Allow modify staircase lighting delay off time via bus by user.

--- Alarm staircase lighting to bus
Options: NO
 YES

NO: Prohibition alarm.
YES: Allow send out warning state use alarm data point for ON/OFF staircase light.

--- Time for off : (0..255 Min)
Options: 0..255 Min
Duration minutes of the staircase lighting delay off time.

--- Time for off : (0..59 Sec)
Options: 0..255 min
Duration seconds of the staircase lighting delay off time.

--- Warning staircase lighting (ON→OFF→ON)
Options: NO
 YES

NO: Not allow alarm
YES: Allow alarm.

→ Warning before the end of time (sec)
Options: 3..100 sec
Note: If this time out range of the total staircase light time,then the warning function is invalid.

→ Duration time for warning (sec)
Options: 1..10 sec
Note: If this time out range of the total staircase light time,then the warning function is invalid.
ON/OFF delay:

<table>
<thead>
<tr>
<th>Time function</th>
<th>ON/OFF delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>--> Delay for switching ON: (0..255 Min)</td>
<td>0</td>
</tr>
<tr>
<td>--> Delay for switching ON: (0..59 Sec)</td>
<td>0</td>
</tr>
<tr>
<td>--> Delay for switching OFF: (0..255 Min)</td>
<td>0</td>
</tr>
<tr>
<td>--> Delay for switching OFF: (0..59 Sec)</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig.44: ON/OFF delay

This function is including switch ON delay and switch OFF delay.

Delay for switching ON: (0..255 Min)

Options: **0..255 Min**

Duration minutes of the ON delay.

Delay for switching ON: (0..59 Sec)

Options: **0.. 59 Sec**

Duration seconds of the ON delay.

Delay for switching OFF: (0..255 Min)

Options: **0..255 Min**

Duration minutes of the OFF delay.

Delay for switching OFF: (0..59 Sec)

Options: **0.. 59 Sec**

Duration seconds of the OFF delay.
4-Communication objects description

In this section will introduce the communication objects. The objects will show by setting the function enable. In the Fan/Fan coil controller: fan, Heating or Cooling communication objects are the same with Heating and cooling. So, the following paragraph will description of the Heating and cooling and Floor heating communication objects in detail.

4.1 Objects “General”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>General</td>
<td>Send cycles</td>
<td>C R T</td>
<td>DPT 1.003, 1bit</td>
</tr>
</tbody>
</table>

This communication object is always active and valid. Invert the value send telegram to bus in next frame. e.g. last telegram value is “1”, the next telegram value is “0”.

4.2 Fan/Fan coil controller

4.2.1 Objects “Actual temperature”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Actual temperature 1</td>
<td>Actual temperature 1</td>
<td>C R W T U</td>
<td>DPT 9.001 2 byte</td>
</tr>
<tr>
<td>11</td>
<td>Actual temperature 2</td>
<td>Actual temperature 2</td>
<td>C R W T U</td>
<td>DPT 9.001 2 byte</td>
</tr>
<tr>
<td>12</td>
<td>Actual temperature 1</td>
<td>Actual temp. 1 error signal</td>
<td>C R T</td>
<td>DPT 1.005 1bit</td>
</tr>
<tr>
<td>13</td>
<td>Actual temperature 2</td>
<td>Actual temp. 2 error signal</td>
<td>C R T</td>
<td>DPT 1.005 1bit</td>
</tr>
</tbody>
</table>

If the Fan Coil Unit Controller is operated with the temperature sensor TS/C 1.0 connected, the actual temperature is sent to this communication object via the KNX/EIB. Cyclical sending can also be set in the parameters. The parameterized Temperature 1 Correction value is included.

If the Fan Coil Unit Controller is operated without the temperature sensor, it receives the actual temperature via the KNX/EIB at this communication object.

This object is only visible if the option “Two sensor via EIB (Count=2)” is selected, it receives the actual temperature via the KNX/EIB at this communication object.

An error signal can be sent to the KNX/EIB with this object if the space temperature 1 has not been refreshed within a set period. The output of the error signal can occur 1..255 or cyclically.
Telegram value: “0”: No error
“1”: Error

<table>
<thead>
<tr>
<th>13</th>
<th>Actual temperature</th>
<th>Actual temp. 2 error signal</th>
<th>C R T</th>
<th>DPT 1.005 1bit</th>
</tr>
</thead>
</table>

An error signal can be sent to the KNX/EIB with this object if the space temperature 2 has not been refreshed within a set period. The output of the error signal can occur 1..255 or cyclically.
Telegram value: “0”: No error
“1”: Error

<table>
<thead>
<tr>
<th>14</th>
<th>Actual temperature</th>
<th>Frost/heat alarm error signal</th>
<th>C R T</th>
<th>DPT 1.005 1bit</th>
</tr>
</thead>
</table>

The Fan Coil Controller sends information via this communication object about whether frost protection mode is active.
Telegram value: “0”: No frost/heat protection
“1”: Frost/heat protection

4.2.2 Objects “Setpoint”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Setpoint</td>
<td>Base setpoint temperature</td>
<td>C R W T U</td>
<td>DPT 9.001 2 byte</td>
</tr>
<tr>
<td>21</td>
<td>Setpoint</td>
<td>Instantaneous setpoint temp.</td>
<td>C R T</td>
<td>DPT 9.001 2 byte</td>
</tr>
</tbody>
</table>

The base setpoint value can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>21</th>
<th>Setpoint</th>
<th>Instantaneous setpoint temp.</th>
<th>C R T</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

The current setpoint (base setpoint including the reduction/increase in standby mode or during night mode) can be read out from this communication object.

4.2.3 Objects “HVAC control mode”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>HVAC control mode</td>
<td>HVAC control mode</td>
<td>C R W T U</td>
<td>DPT 20.105 1 byte</td>
</tr>
<tr>
<td>26</td>
<td>HVAC control mode</td>
<td>Automatic heating/cooling mode</td>
<td>C R W T U</td>
<td>DPT 20.105 1 byte</td>
</tr>
<tr>
<td>27</td>
<td>HVAC control mode</td>
<td>Activation of heating mode</td>
<td>C R W T U</td>
<td>DPT 20.105 1 byte</td>
</tr>
<tr>
<td>28</td>
<td>HVAC control mode</td>
<td>Activation of cooling mode</td>
<td>C R W T U</td>
<td>DPT 20.105 1 byte</td>
</tr>
<tr>
<td>29</td>
<td>HVAC control mode</td>
<td>Activation of fan only</td>
<td>C R W T U</td>
<td>DPT 20.105 1 byte</td>
</tr>
</tbody>
</table>

HVAC control mode conversion. Only the following telegram value is effective.
Telegram value: “0”: Auto
“1”: Heat
“3”: Cool
“6”: Off
“9”: Fan only
4.2.4 Objects “HVAC mode”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>HVAC mode</td>
<td>HVAC mode (byte)</td>
<td>C R W T U</td>
<td>DPT 20.102 1 byte</td>
</tr>
<tr>
<td>31</td>
<td>HVAC mode</td>
<td>ON CMD for comfort mode</td>
<td>C R W T U</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>32</td>
<td>HVAC mode</td>
<td>ON CMD for standby mode</td>
<td>C R W T U</td>
<td>Low</td>
</tr>
<tr>
<td>33</td>
<td>HVAC mode</td>
<td>ON CMD for night mode</td>
<td>C R W T U</td>
<td>Low</td>
</tr>
<tr>
<td>34</td>
<td>HVAC mode</td>
<td>ON CMD for building protection</td>
<td>C R W T U</td>
<td>Low</td>
</tr>
</tbody>
</table>

Input object shall be used to the HVAC Mode.

Telegram value: “1”: Comfort mode

“2”: Standby mode

“3”: Night mode

“4”: building protection

The Fan Coil Controller is switched to comfort mode via this communication object.

If the device has been switched from comfort mode to night mode, the comfort extension is activated for the duration of the parameterized *Extended comfort mode*.

Note: If a “1” is received at above communication objects, the final value received is definitive.
time by a telegram at this communication object. The comfort extension is restarted by each subsequent telegram.
Telegram value: “0”: No function
“1”: Comfort mode/comfort extension

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>HVAC mode</td>
<td>ON CMD for standby mode</td>
<td>C R W T U</td>
<td>DPT 1. 001 1 bit</td>
</tr>
</tbody>
</table>

Input object for switching to standby mode.
Telegram value: “0”: No function
“1”: Standby mode

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>HVAC mode</td>
<td>ON CMD for night mode</td>
<td>C R W T U</td>
<td>DPT 1. 001 1 bit</td>
</tr>
</tbody>
</table>

Input object for switching to night mode.
Telegram value: “0”: No function
“1”: Night mode

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>HVAC mode</td>
<td>ON CMD for building protection</td>
<td>C R W T U</td>
<td>DPT 1. 001 1 bit</td>
</tr>
</tbody>
</table>

Input object for switching to building protection mode.
Telegram value: “0”: No function
“1”: building protection mode

Note: If a “1” is received at above communication objects, the final value received is definitive.

4.2.5 Objects “Fan”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Fan</td>
<td>Fan speed automatic</td>
<td>1 bit C - W - U</td>
<td>Low</td>
</tr>
</tbody>
</table>

If fan speed automatic mode is activated, it will be activated on this communication object with the value ‘1’ after a download, bus reset or via a telegram. Automatic mode is switched off, if a signal is received on this communication object with the value ‘0’, a Fan speed with % value or Fan speed 1(2,3) communication object. Fan speed limitation only used for fan speed automatic mode.

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Fan</td>
<td>Fan speed with % value</td>
<td>C W U</td>
<td>DPT 5.001 1 byte</td>
</tr>
</tbody>
</table>

With the coding below combinations of devices with different number of steps is possible. The stop of the actuator is defined and the highest speed of the controller always results in highest speed of the actuator. Steps in between are interpreted to the best. Fan speed automatic mode becomes inactive.
1-Speed

<table>
<thead>
<tr>
<th>Speed</th>
<th>Percent(%)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>1 - 100</td>
<td>1 - 255</td>
</tr>
</tbody>
</table>

2-Speed

<table>
<thead>
<tr>
<th>Speed</th>
<th>Percent(%)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>1 - 50</td>
<td>1 - 128</td>
</tr>
<tr>
<td>II</td>
<td>51 - 100</td>
<td>129 - 255</td>
</tr>
</tbody>
</table>

3-Speed

<table>
<thead>
<tr>
<th>Speed</th>
<th>Percent(%)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>1 - 33</td>
<td>1 - 85</td>
</tr>
<tr>
<td>II</td>
<td>34 - 67</td>
<td>86 - 170</td>
</tr>
<tr>
<td>III</td>
<td>68 - 100</td>
<td>171 - 255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan</th>
<th>Fan speed 1</th>
<th>C W U</th>
<th>DPT 1. 001 1 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan</th>
<th>Fan speed 2</th>
<th>C W U</th>
<th>DPT 1. 001 1 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan</th>
<th>Fan speed 3</th>
<th>C W U</th>
<th>DPT 1. 001 1 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Via the 1 bit communication object the Fan Coil Actuator can receive a control value for fan speed x (x=1,2,3). Automatic operation is disabled. A renewed activation occurs via the communication objects Fan speed automatic. If several ON commands ‘1’ are received by the various fan speed objects, the value that was last received for the fan control is decisive. This also applies for the OFF command ‘0’. If the actuator for a speed that has been switched off receives another OFF command, it is carried out, i.e. a speed that is currently switched on is switched off, even though the corresponding fan speed object does not act directly on the speed. The last command – in this case the OFF command of another speed – is always executed.

Telegram value: “0”: Fan OFF
“1”: Fan speed x ON
4.2.6 Objects “Fan status”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Fan Status fan speed 1</td>
<td>1 bit</td>
<td>C, R, T</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>46</td>
<td>Fan Status fan speed 2</td>
<td>1 bit</td>
<td>C, R, T</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>47</td>
<td>Fan Status fan speed 3</td>
<td>1 bit</td>
<td>C, R, T</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>48</td>
<td>Fan Status fan speed</td>
<td>1 byte</td>
<td>C, R, T</td>
<td>DPT 5.010 1 byte</td>
</tr>
<tr>
<td>49</td>
<td>Fan Status fan On/Off</td>
<td>1 bit</td>
<td>C, R, T</td>
<td>DPT 1.001 1 bit</td>
</tr>
</tbody>
</table>

These objects are enabled if the parameter Enable 1bit object “Status fan speed x” is enabled in the parameter window Function status. It can be parameterised (see parameter window Function status) whether the object value is only updated, always sent on the KNX/EIB or only sent after a change. It can be parameterised for the status to indicate a current fan speed or a required fan speed.

With this object, it is possible to display the fan speed in a visualisation program or to indicate it using a diode.

Telegram value: ‘0’ = fan speed OFF
‘1’ = fan speed ON

This object is enabled if the parameter Enable 1-byte object “Status fan speed” is enabled in the parameter window Function status. It can be parameterised (see parameter window Function status) whether the object value is only updated, always sent on the KNX/EIB or only sent after a change. It is possible to parameterise if the actual or required speed are displayed with the status object. With this object it is possible for example to display the fan speed on the display as a direct numerical value.

The following telegram values apply for the 1-byte object:

<table>
<thead>
<tr>
<th>Numerical value</th>
<th>Hexadecimal</th>
<th>Binary value</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00000000</td>
<td>0 (off)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00000001</td>
<td>Speed 1</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>00000010</td>
<td>Speed 2</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>00000011</td>
<td>Speed 3</td>
</tr>
</tbody>
</table>

This object is enabled if the parameter Enable 1Bit object “Status fan On/Off” is enabled in the parameter window Function status. It is possible to parameterise if an object value is only updated, always sent on the KNX/EIB or only sent after a change.
Telegram value: ‘0’ = fan speed OFF
‘1’ = fan speed ON

<table>
<thead>
<tr>
<th>NO.</th>
<th>Fan</th>
<th>Status fan speed automatic</th>
<th>C R T</th>
<th>DPT 1.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td>automatic</td>
<td></td>
<td>1 bit</td>
</tr>
</tbody>
</table>

This object is enabled if the parameter Enable 1Bit object “Status fan speed automatic” is enabled in the parameter window Function status. It is possible to parameterise if an object value is only updated, always sent on the KNX/EIB or only sent after a change. The object indicates the status of the fan speed automatic mode.
Telegram value: ‘0’ = inactive
‘1’ = activated

4.2.7 Objects “Fan limitation”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Fan</td>
<td>Limitation 1</td>
<td>C R W T U</td>
<td>DPT 1.003</td>
</tr>
<tr>
<td>52</td>
<td>Fan</td>
<td>Limitation 2</td>
<td>C R W T U</td>
<td>DPT 1.003</td>
</tr>
<tr>
<td>53</td>
<td>Fan</td>
<td>Limitation 3</td>
<td>C R W T U</td>
<td>DPT 1.003</td>
</tr>
<tr>
<td>54</td>
<td>Fan</td>
<td>Limitation 4</td>
<td>C R W T U</td>
<td>DPT 1.003</td>
</tr>
</tbody>
</table>

These objects are enabled if the parameter Enable limitations (Automatic fan control) is enabled in the parameter window Fan (Relay) or Fan (0-10v). The limitation x (x=1,2,3,4) is active if a telegram with the value ‘1’ is received on the communication object Limitation x. All the Limitation x is deactivated if a telegram with the value ‘0’ is received on the communication object Limitation x.
When Limitation x is activated, the fan can only assume the set fan speed or fan speed range in the parameter window Fan (Relay) or Fan (0-10v). The valve position is independently programmable from the fan limitation.
If several Enable commands ‘1’ are received by the various limitation objects, the value that was last received for the fan speed limitation control is decisive. This also applies for the Disable command ‘0’. If the fan speed for a limitation function that has been inactive receives another Disable command, it is carried out, i.e. a limitation function that is currently is inactive, even though the corresponding limitation function object does not act directly on the limitation object. The last command – in this case the Disable command of another limitation object– is always executed.
Telegram value: ‘0’ = All limitation disable
‘1’ = limitation x enable
4.2.8 Objects “Valve Heating”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Valve Heating</td>
<td>Status valve position</td>
<td>CRT</td>
<td>DPT 1.001</td>
</tr>
<tr>
<td>61</td>
<td>Valve Heating</td>
<td>Trigger valve purge</td>
<td>C W U</td>
<td>DPT 1.017</td>
</tr>
<tr>
<td>62</td>
<td>Valve Heating</td>
<td>Status valve purge</td>
<td>CRT</td>
<td>DPT 1.003</td>
</tr>
</tbody>
</table>

This communication object is visible if the parameter window Enable 1Bit object “Heating valve position status” is enabled in the parameter window Function status. The status of the valve position is visible via this communication object. Hereby, the target position where the valve should move to is always transferred.

If the value ‘1’ is set in the parameter “Object value with valve position>0”:

Telegram value: '0' = Valve position equal to zero
‘1’ = Valve position not equal to zero

If the value ‘0’ is set in the parameter “Object value with valve position>0”:

Telegram value: '0' = Valve position not equal to zero
‘1’ = Valve position equal to zero

4.2.9 Objects “Valve Cooling”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Valve Cooling</td>
<td>Status valve position</td>
<td>CRT</td>
<td>DPT 1.001</td>
</tr>
<tr>
<td>64</td>
<td>Valve Cooling</td>
<td>Trigger valve purge</td>
<td>CRT</td>
<td>DPT 1.001</td>
</tr>
<tr>
<td>65</td>
<td>Valve Cooling</td>
<td>Status valve purge</td>
<td>CRT</td>
<td>DPT 1.001</td>
</tr>
</tbody>
</table>

This communication object is visible if the parameter window Enable 1Bit object “Cooling valve position status” is enabled in the parameter window Function status. The status of the valve position is visible via this communication object. Hereby, the target position where the valve should move to is always transferred.
If the value ‘1’ is set in the parameter “Object value with valve position>0”:
Telegram value: ‘0’ = Valve position equal to zero
 ‘1’ = Valve position not equal to zero
If the value ‘0’ is set in the parameter “Object value with valve position>0”:
Telegram value: ‘0’ = Valve position not equal to zero
 ‘1’ = Valve position equal to zero

<table>
<thead>
<tr>
<th>NO.</th>
<th>Name</th>
<th>Function</th>
<th>Flags</th>
<th>DPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Valve Cooling</td>
<td>Trigger valve purge</td>
<td>C W U</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

The cooling valve purge is triggered using this communication object. The purge cycle with automatic purge will be restarted.
Telegram value: ‘0’ = end valve purge, valve will be closed
 ‘1’ = start valve purge, valve will be opened

<table>
<thead>
<tr>
<th>NO.</th>
<th>Name</th>
<th>Function</th>
<th>Flags</th>
<th>DPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Valve Cooling</td>
<td>Status valve purge</td>
<td>C R T</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

The status of the cooling valve purge is visible via this communication object.
Telegram value: ‘0’ = valve purge not active
 ‘1’ = valve purge active

4.3 Floor heating

4.3.1 Objects “Slave clock”

The local clock of slave system clock shall be synchronised by reception of a ‘System Clock’ information from the master system clock.

<table>
<thead>
<tr>
<th>NO.</th>
<th>Name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slave clock</td>
<td>Network datetime</td>
<td>C W T U</td>
<td>DPT 19.001 8 byte</td>
</tr>
<tr>
<td>2</td>
<td>Slave clock</td>
<td>Network date</td>
<td>C W T U</td>
<td>DPT 11.001 3 byte</td>
</tr>
<tr>
<td>3</td>
<td>Slave clock</td>
<td>Network time of day</td>
<td>C W T U</td>
<td>DPT 10.001 3 byte</td>
</tr>
</tbody>
</table>
4.3.2 Objects “Pipe pressure protection”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Floor heating</td>
<td>Pipe pressure protection</td>
<td>CRT</td>
<td>DPT 1.001, 1 blt</td>
</tr>
</tbody>
</table>

This communication object is used for pipe pressure protection. If all of the floor heating channel are turn off, this object status is sent ON, then the response status value is “1”, Otherwise the status value is “0”.

4.3.3 Objects “Floor heating N”

In this section will introduce the floor heating N communication objects, the objects will show by setting the floor heating N function able.

Note: In following sections the N=A,B,C,D,E,F,G

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Floor heating A</td>
<td>Actual temperature</td>
<td>CRWUT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>6</td>
<td>Floor heating A</td>
<td>Actual temp. error signal</td>
<td>C RT</td>
<td>DPT 1.001, 1 blt</td>
</tr>
<tr>
<td>7</td>
<td>Floor heating A</td>
<td>Normal-mode setpoint Temp.</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>8</td>
<td>Floor heating A</td>
<td>Day-mode setpoint Temp.</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>9</td>
<td>Floor heating A</td>
<td>Night-mode setpoint Temp.</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>10</td>
<td>Floor heating A</td>
<td>Away-mode setpoint Temp.</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>11</td>
<td>Floor heating A</td>
<td>Preset 1 Temp. For timer mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>12</td>
<td>Floor heating A</td>
<td>Time of day for preset 1</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>13</td>
<td>Floor heating A</td>
<td>Start/Stop heating for preset 1</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>14</td>
<td>Floor heating A</td>
<td>Preset 2 Temp. For timer mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>15</td>
<td>Floor heating A</td>
<td>Time of day for preset 2</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>16</td>
<td>Floor heating A</td>
<td>Start/Stop heating for preset 2</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>17</td>
<td>Floor heating A</td>
<td>Preset 3 Temp. For timer mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>18</td>
<td>Floor heating A</td>
<td>Time of day for preset 3</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>19</td>
<td>Floor heating A</td>
<td>Start/Stop heating for preset 3</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>20</td>
<td>Floor heating A</td>
<td>Floor heating(1=ON,0=OFF)</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>21</td>
<td>Floor heating A</td>
<td>ON CND for Normal-mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>22</td>
<td>Floor heating A</td>
<td>ON CND for Day-mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>23</td>
<td>Floor heating A</td>
<td>ON CND for Night-mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>24</td>
<td>Floor heating A</td>
<td>ON CND for Away-mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>25</td>
<td>Floor heating A</td>
<td>ON CND for Timer-mode</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>26</td>
<td>Floor heating A</td>
<td>Status valve position</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>27</td>
<td>Floor heating A</td>
<td>Trigger valve purge</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>28</td>
<td>Floor heating A</td>
<td>Status valve purge</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
<tr>
<td>29</td>
<td>Floor heating A</td>
<td>Instantaneous setpoint Temp.</td>
<td>C RT</td>
<td>DPT 9.001, 2 byte</td>
</tr>
</tbody>
</table>

If the Floor heating N is operated with the temperature sensor TS/C 1.0 connected, the actual temperature is sent to this communication object via the KNX/EIB. Cyclical sending can also be set in the parameters. The parameterized Temperature
1. **Correction value** is included.

 If the Floor heating N is operated without the temperature sensor, it receives the actual temperature via the KNX/EIB at this communication object.

<table>
<thead>
<tr>
<th>6, 31...</th>
<th>Floor heating N</th>
<th>Actual temp. error signal</th>
<th>C R T</th>
<th>DPT 1.005 1 bit</th>
</tr>
</thead>
</table>

 An error signal can be sent to the KNX/EIB with this object if the space temperature has not been refreshed within a set period. The output of the error signal can occur 1..255 or cyclically.

 Telegram value: “0”: No error
 “1”: Error

<table>
<thead>
<tr>
<th>7, 32...</th>
<th>Floor heating N</th>
<th>Normal-mode setpoint Temp.</th>
<th>C R W T U</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

 The Normal-mode setpoint temperature can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>8, 33...</th>
<th>Floor heating N</th>
<th>Day-mode setpoint Temp.</th>
<th>C R W T U</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

 The Day-mode setpoint temperature can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>9, 34...</th>
<th>Floor heating N</th>
<th>Night-mode setpoint Temp.</th>
<th>C R W T U</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

 The Night-mode setpoint temperature can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>10, 35...</th>
<th>Floor heating N</th>
<th>Away-mode setpoint Temp.</th>
<th>C R W T U</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

 The Away-mode setpoint temperature can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>11, 36...</th>
<th>Floor heating N</th>
<th>Preset 1 Temp. for timer mode</th>
<th>C R W T U</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

 The Time-mode preset 1 temperature can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>12, 37...</th>
<th>Floor heating N</th>
<th>Time of day for preset 1</th>
<th>C R W T U</th>
<th>DPT 10.001 3 byte</th>
</tr>
</thead>
</table>

 The Time-mode preset 1 start time can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>13, 38...</th>
<th>Floor heating N</th>
<th>Start/Stop heating for preset 1</th>
<th>C R W T U</th>
<th>DPT 1.010 1 bit</th>
</tr>
</thead>
</table>

 The Time-mode floor heating start or stop in this preset 1 time can be modified via this input. It is stored in non-volatile memory.

<table>
<thead>
<tr>
<th>14, 39...</th>
<th>Floor heating N</th>
<th>Preset 2 Temp. for timer mode</th>
<th>C R W T U</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

 The Time-mode preset 2 temperature can be modified via this input. It is stored in non-volatile memory.
<table>
<thead>
<tr>
<th>15, 40...</th>
<th>Floor heating N</th>
<th>Time of day for preset 2</th>
<th>C R W T U</th>
<th>DPT 10.001 3 byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Time-mode preset 2 start time can be modified via this input. It is stored in non-volatile memory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16, 41...</td>
<td>Floor heating N</td>
<td>Start/Stop heating for preset 2</td>
<td>C R W T U</td>
<td>DPT 1.010 1 bit</td>
</tr>
<tr>
<td>The Time-mode floor heating start or stop in this preset 2 time can be modified via this input. It is stored in non-volatile memory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17, 42...</td>
<td>Floor heating N</td>
<td>Preset 3 Temp. for timer mode</td>
<td>C R W T U</td>
<td>DPT 9.001 2 byte</td>
</tr>
<tr>
<td>The Time-mode preset 3 temperature can be modified via this input. It is stored in non-volatile memory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18, 43...</td>
<td>Floor heating N</td>
<td>Time of day for preset 3</td>
<td>C R W T U</td>
<td>DPT 10.001 3 byte</td>
</tr>
<tr>
<td>The Time-mode preset 3 start time can be modified via this input. It is stored in non-volatile memory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19, 44...</td>
<td>Floor heating N</td>
<td>Start/Stop heating for preset3</td>
<td>C R W T U</td>
<td>DPT 1.010 1 bit</td>
</tr>
<tr>
<td>The Time-mode floor heating start or stop in this preset 3 time can be modified via this input. It is stored in non-volatile memory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20, 45...</td>
<td>Floor heating N</td>
<td>Floor heating(1-ON,0-OFF)</td>
<td>C R W T U</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>Floor heating N start working when the object receive the value is “1”, and stop working when the object receive the value is “0”.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21, 46...</td>
<td>Floor heating N</td>
<td>ON CMD for Normal-mode</td>
<td>C R W T U</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>Input object for switching to Normal-mode. Telegram value: “0”: No function “1”: Normal mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22, 47...</td>
<td>Floor heating N</td>
<td>ON CMD for Day-mode</td>
<td>C R W T U</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>Input object for switching to Day-mode. Telegram value: “0”: No function “1”: Day mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23, 48...</td>
<td>Floor heating N</td>
<td>ON CMD for Night-mode</td>
<td>C R W T U</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>Input object for switching to Night-mode. Telegram value: “0”: No function “1”: Night mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24, 49...</td>
<td>Floor heating N</td>
<td>ON CMD for Away-mode</td>
<td>C R W T U</td>
<td>DPT 1.001 1 bit</td>
</tr>
<tr>
<td>Input object for switching to Away-mode.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telegram value: “0”: No function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“1”: Away mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25, 50...</th>
<th>Floor heating N ON CMD for Timer-mode</th>
<th>C R W T U</th>
<th>DPT 1.001 1 bit</th>
</tr>
</thead>
</table>

Input object for switching to Timer-mode.
Telegram value: “0”: No function
“1”: Timer mode

<table>
<thead>
<tr>
<th>26, 51...</th>
<th>Floor heating N Status valve position</th>
<th>C R T</th>
<th>DPT 1.001 1 bit</th>
</tr>
</thead>
</table>

This communication object is visible if the parameter window Enable 1Bit object “Valve position status” is enabled in the parameter window Valve. The status of the valve position is visible via this communication object. Hereby, the target position where the valve should move to is always transferred.

If the value ‘1’ is set in the parameter “Object value with valve position>0”:
Telegram value: ‘0’ = Valve position equal to zero
‘1’ = Valve position not equal to zero

If the value ‘0’ is set in the parameter “Object value with valve position>0”:
Telegram value: ‘0’ = Valve position not equal to zero
‘1’ = Valve position equal to zero

<table>
<thead>
<tr>
<th>27, 52...</th>
<th>Floor heating N Trigger valve purge</th>
<th>C W U</th>
<th>DPT 1.017 1 bit</th>
</tr>
</thead>
</table>

The Floor heating N valve purge is triggered using this communication object. The purge cycle with automatic purge will be restarted.
Telegram value: ‘0’ = end valve purge, valve will be closed
‘1’ = start valve purge, valve will be opened

<table>
<thead>
<tr>
<th>28, 53...</th>
<th>Floor heating N Status valve purge</th>
<th>C R T</th>
<th>DPT 1.003 1 bit</th>
</tr>
</thead>
</table>

The status of the Floor heating N valve purge is visible via this communication object.
Telegram value: ’0’ = valve purge not active
‘1’ = valve purge active

<table>
<thead>
<tr>
<th>29, 54...</th>
<th>Floor heating N Instantaneous setpoint temp.</th>
<th>C R T</th>
<th>DPT 9.001 2 byte</th>
</tr>
</thead>
</table>

The instantaneous setpoint (current mode setpoint temperature) can be read out from this communication object.
4.4 Switch actuator

In this section will introduce the switch actuator communication objects, The objects will show by setting the switch actuator function enable.

Note: In following sections the N=A,B,C,D,E

4.4.1 Objects “Output N”

<table>
<thead>
<tr>
<th>NO.</th>
<th>Object name</th>
<th>Function</th>
<th>Flags</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>Output N</td>
<td>Channel output</td>
<td>C W U</td>
<td>DPT 1.001</td>
</tr>
<tr>
<td>182</td>
<td>Output N</td>
<td>Read/Write statistic for time</td>
<td>C R W T U</td>
<td>DPT 7.007</td>
</tr>
<tr>
<td>183</td>
<td>Output N</td>
<td>Alarm statistic for time out</td>
<td>C R T</td>
<td>DPT 1.005</td>
</tr>
<tr>
<td>184</td>
<td>Output N</td>
<td>Staircase light</td>
<td>C W U</td>
<td>DPT 1.001</td>
</tr>
<tr>
<td>185</td>
<td>Output N</td>
<td>Change staircase lighting time</td>
<td>C R W T U</td>
<td>DPT 7.007</td>
</tr>
<tr>
<td>186</td>
<td>Output N</td>
<td>Alarm staircase lighting</td>
<td>C R T</td>
<td>DPT 1.005</td>
</tr>
<tr>
<td>187</td>
<td>Output N</td>
<td>R/W statistic for counter</td>
<td>C R W T U</td>
<td>DPT 7.007</td>
</tr>
</tbody>
</table>

These communication objects of the channel output used for ON/OFF an channel, the switch output ON when the object receive the value is “1”, the switch output OFF when the object receive the value is “0”.

This communication object used response the channel N status, If channel status is ON, then the response status value is “1”, Otherwise the status value is “0”.

This communication object is used for statistics ON time of the channel “N”. It can be read/wrote via bus by setting this function activity.

This communication object is used for statistic alarm when ON time out set range.

This communication object is used for start or stop staircase light.

This communication object is used to modify the staircase lighting running.
<table>
<thead>
<tr>
<th>No.</th>
<th>Address</th>
<th>Function Description</th>
<th>Property</th>
<th>DPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>186, 196...</td>
<td>Output A</td>
<td>Alarm staircase lighting</td>
<td>CRT</td>
<td>1.005 1 bit</td>
</tr>
<tr>
<td>187, 197...</td>
<td>Relay</td>
<td>R/W statistic for counter</td>
<td>CRWTU</td>
<td>12.001 4 byte</td>
</tr>
</tbody>
</table>

This communication object is used to alarm the staircase lighting. If the function is activated, the staircase lighting starts or stops, the communication object will alarm via bus. Channel “N” is ON alarm “1”, otherwise alarm “0”.

This communication object is used for statistics ON counter of the channel “N”. It can be read/write via bus by setting this function activity.
5- Application

5.1 Program functions diagram
5.2 Room thermostat with the Fan Coil Controller

The setpoint temperature, HVAC mode, fan speed and the toggling of the HVAC control mode are carried out via an KNX operator panel (e.g. M/DLP04.1 - used the HVAC mode), it also can be monitoring the actual temperature to display.

5.3 Room thermostat with the floor heating

The setpoint temperature, and the toggling of the operation are carried out via an KNX operator panel (e.g. M/DLP04.1 - used the floor heating mode), it also can be monitoring the actual temperature to display.